Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Microbiol ; 14: 1281628, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38033561

RESUMEN

Methane emission by terrestrial invertebrates is restricted to millipedes, termites, cockroaches, and scarab beetles. The arthropod-associated archaea known to date belong to the orders Methanobacteriales, Methanomassiliicoccales, Methanomicrobiales, and Methanosarcinales, and in a few cases also to non-methanogenic Nitrososphaerales and Bathyarchaeales. However, all major host groups are severely undersampled, and the taxonomy of existing lineages is not well developed. Full-length 16S rRNA gene sequences and genomes of arthropod-associated archaea are scarce, reference databases lack resolution, and the names of many taxa are either not validly published or under-classified and require revision. Here, we investigated the diversity of archaea in a wide range of methane-emitting arthropods, combining phylogenomic analysis of isolates and metagenome-assembled genomes (MAGs) with amplicon sequencing of full-length 16S rRNA genes. Our results allowed us to describe numerous new species in hitherto undescribed taxa among the orders Methanobacteriales (Methanacia, Methanarmilla, Methanobaculum, Methanobinarius, Methanocatella, Methanoflexus, Methanorudis, and Methanovirga, all gen. nova), Methanomicrobiales (Methanofilum and Methanorbis, both gen. nova), Methanosarcinales (Methanofrustulum and Methanolapillus, both gen. nova), Methanomassiliicoccales (Methanomethylophilaceae fam. nov., Methanarcanum, Methanogranum, Methanomethylophilus, Methanomicula, Methanoplasma, Methanoprimaticola, all gen. nova), and the new family Bathycorpusculaceae (Bathycorpusculum gen. nov.). Reclassification of amplicon libraries from this and previous studies using this new taxonomic framework revealed that arthropods harbor only CO2 and methyl-reducing hydrogenotrophic methanogens. Numerous genus-level lineages appear to be present exclusively in arthropods, suggesting long evolutionary trajectories with their termite, cockroach, and millipede hosts, and a radiation into various microhabitats and ecological niches provided by their digestive tracts (e.g., hindgut compartments, gut wall, or anaerobic protists). The distribution patterns among the different host groups are often complex, indicating a mixed mode of transmission and a parallel evolution of invertebrate and vertebrate-associated lineages.

2.
Appl Microbiol Biotechnol ; 104(6): 2523-2536, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31989220

RESUMEN

Cyclodipeptide oxidases (CDOs) perform dehydrogenations on diketopiperazines and play an important role in the cyclodipeptide diversification. In this study, we investigated the two known CDOs AlbA/B and Ndas_1146/7 and one new member, CDO-Np. LC-MS monitoring of 32 cyclodipeptide biotransformations in E. coli revealed good consumption of cyclodipeptides containing aromatic amino acids. Cyclodipeptides consisting solely of aliphatic amino acids were poor substrates. In vitro assays of 34 substrates with crude enzyme extracts and product identification proved that the CDO-Np-containing extract catalyzes the formation of two C-C double bonds in many cases. The extracts containing the two other enzymes had lower activities and catalyzed mainly didehydrogenations. For didehydrogenation, the phenylalanyl or tyrosyl site was usually preferred. No or very low acceptance of benzodiazepinediones and a 2,6-diketopiperazine proved the importance of the 2,5-diketopiperazine ring. N-Methylation at the diketopiperazine ring or prenylation of the tryptophan-containing cyclodipeptides influences the enzyme activity and product spectrum. KEY POINTS: • Comparison of catalytic activities of three enzymes; Diverse cyclodipeptides and derivatives as substrates; Determination of double bond formation using2H-labeled substrates; Product identification also by interpretation of MS2fragmentation pattern.


Asunto(s)
Carbono/metabolismo , Dicetopiperazinas/metabolismo , Escherichia coli/enzimología , Oxidorreductasas/metabolismo , Aminoácidos/metabolismo , Biotransformación , Catálisis , Metilación , Oxidorreductasas/clasificación , Especificidad por Sustrato
3.
Bioorg Med Chem Lett ; 26(9): 2255-8, 2016 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-27020303

RESUMEN

Incorporation of fluorine in a drug can dramatically affect its metabolism and methods to assess the effect of fluorine substitution on drug metabolism are required for effective drug design. Employing a previously developed chemical-microbial method the metabolism of a series of fluorinated biphenyl ethers was determined. The substrates were synthesized via Ullmann-type condensation reactions between bromotoluene and fluorophenol. The ethers were incubated with the fungus Cunninghamella elegans, which oxidises xenobiotics in an analogous fashion to mammals, generating a number of hydroxylated biphenyl ethers and acids. The propensity of the fluorinated ring to be hydroxylated depended upon the position of the fluorine atom, and the oxidation of the methyl group was observed when it was meta to the oxygen. The experiments demonstrate the applicability of the method to rapidly determine the effect of fluorine substitution on CYP-catalysed biotransformation of pro-drug molecules.


Asunto(s)
Compuestos de Bifenilo/farmacología , Flúor/química , Profármacos/farmacología , Compuestos de Bifenilo/química , Éteres/química , Profármacos/química
4.
Appl Environ Microbiol ; 78(23): 8245-53, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23001661

RESUMEN

The Euryarchaeota comprise both methanogenic and nonmethanogenic orders and many lineages of uncultivated archaea with unknown properties. One of these deep-branching lineages, distantly related to the Thermoplasmatales, has been discovered in various environments, including marine habitats, soil, and also the intestinal tracts of termites and mammals. By comparative phylogenetic analysis, we connected this lineage of 16S rRNA genes to a large clade of unknown mcrA gene sequences, a functional marker for methanogenesis, obtained from the same habitats. The identical topologies of 16S rRNA and mcrA gene trees and the perfect congruence of all branches, including several novel groups that we obtained from the guts of termites and cockroaches, strongly suggested that they stem from the same microorganisms. This was further corroborated by two highly enriched cultures of closely related methanogens from the guts of a higher termite (Cubitermes ugandensis) and a millipede (Anadenobolus sp.), which represented one of the arthropod-specific clusters in the respective trees. Numerous other pairs of habitat-specific sequence clusters were obtained from the guts of other termites and cockroaches but were also found in previously published data sets from the intestinal tracts of mammals (e.g., rumen cluster C) and other environments. Together with the recently described Methanomassiliicoccus luminyensis isolated from human feces, which falls into rice cluster III, the results of our study strongly support the idea that the entire clade of "uncultured Thermoplasmatales" in fact represents the seventh order of methanogenic archaea, for which the provisional name "Methanoplasmatales" is proposed.


Asunto(s)
Artrópodos/microbiología , Microbiología Ambiental , Euryarchaeota/clasificación , Euryarchaeota/genética , Metagenoma , Metano/metabolismo , Animales , Análisis por Conglomerados , ADN de Archaea/química , ADN de Archaea/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Euryarchaeota/metabolismo , Tracto Gastrointestinal/microbiología , Humanos , Datos de Secuencia Molecular , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...